ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4
N7 Space Sp. z 0.0. Page: 10f40

ARM Board Support Package
Criticality B Qualification

Board Support Package —
Software User Manual

ARMB-N7S-BSP-SUM rev. 1.4

N7 SPACE SP. Z O.0.

Prepared by Date and Signature
Konl’ad GI’OChOWSkI L Konrad Grochowski

Eolos, (... 2024.08.13 18:06:22

+02'00"'
Verified by
Mateusz Dyrdot ~__— Mateusz Dyrdot
V47 2024.08.13
2 18:32:04 +02'00"

Approved by
Michal Mosdorf Michat

Mosdorf

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4
N7 Space Sp. z 0.0. Page: 20f40

Table of Contents
R 1011 0o (1ot T] o OSSR 5
2 Applicable and reference dOCUMENTS...........ooiiiiiiiiiiie e 6
P75 Y AN o o] T Tor= o] (oo (o Tot U T=1] SRS 6
2.2 RefErenCe QOCUMENLSc.eiieiieeieeiese ettt ettt et s te st esaeste s e ntesreeeesteeneeneeenes 6
3 Terms, definitions and abbreViated tEIMS........cocveiii i ares 7
O 0] 1)V 01 1] ST USROS PSPPI 8
5 PUrp0Se OF the SOFIWAIE........ccviiiee e et st sreens 9
6 External View Of the SOTEWAIE.........cci i 12
7 Operations ENVIFONIMENToiiiiiriiiteitereeee ettt se bt s e e e b e bbb b ren s 13
% R 710 =T | PSS PR PO 13
7.2 Hardware CONFIGUIATION.......cc.oiieiiieisise st 13
7.3 SOFtWAre CONTIGUIALIONoviieiieiieiisii ettt 13
7.4 Operational CONSIIAINTS........ccciiiiiiiie et st s re e e s te s e e srestaesbesre s 13
SR O 1= - LA 0] (TS o TS ot TSSOSO 15
9 OPEratioNS MANUAL.......cviteeeiteiieiiete ettt b ettt ettt enes 16
10 REFEreNCE MANUALciiiiiiiiiite ettt st et e e enes 17
00 R [011 7T [FTox £ o OSSP P TP 17
10.2 HEIP MEINOM ...ttt bbb 17
10.3 Screen definitions and OPEIatiONS.coviiitiriirieriei e 17
10.4 Commands and OPEIALIONScccveiiiriiiieieie e se et e e sre et sbe e e sbe e e b e s teesbesreereenbesreeneesreens 17
L10.5 EFTON MESSAQES ..vveeiuveeeteteitteeestteesteeesteeessteeesseeessteesteeessteeesseeesseeeabeeeanteeaseeessaeesnseeesnteeansenens 17
I 1 o] ¢ T OSSR 18
00 R [011 €T [FTox o o OSSOSO 18
A €T {0 I U (<o [SRU PR PR 18
11.2.1 OBAINING the SOUICE.......iitiiiiiieiieeet e 18
11.2.2 Using the build environment in DOCKETcccoeiiiiiiiiiniie e 18
11.2.3 BUIlAING the AIIVEIScviiicecieece et sttt st sre et re st 19
11.2.4 Integrating BSP With USEI PrOJECL........coiiiiiiii et 20
11.2.5 Recommended compilation OPLIONSccoriiiiriiiiiiisire e 21
11.3 Using the software on a typical taSK...........oooviieiiiieie e 21
11.3.1 Example program — LED DINKocooiiiii e 21
11.3.2 ASYNCNIrONOUS OPEIALIONSc.veviiiiiiiiiiitiiteste ettt 25
11.3.3 RTEMS INTEGIatiONoiueviiiiinieiieiisit sttt bbbt 29
11.3.4 BSP in MPLAB ENVIFONMENT.......iiiiieiieiee ettt see st seeeneeseeereesae e 32

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4
N7 Space Sp. z 0.0. Page: 30f40

12 ANGIYEICAL INUEX ...ttt n e enes 38
I T I OSSR SOOI 39
131 LISt OF ANNEXES ..ottt sttt bbbtk bbbttt ettt et b et e 39
13.2.1 ANNEX A — EFTOF COUBS ...eviiiiiiieieiteeiie st stee e ste ettt see e stee e steeseestesseeseesaeaneesaeeseensenreas 39
I T I 11 o) I o] TS 39
I T T 1) o) o U= SRS 39
T I 1) o) I 1) o SRRSO 39

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4
N7 Space Sp. z 0.0. Page: 40f40

Change Record

Issue Date Change
1.0 2023-07-10 | Initial release
11 2023-10-12 | Updates for QAR:

e All BSP static libraires will be prefixed with n7s-bsp-

e Some N/A justifications added

e RTEMS integration manual added

e Referenced documents updated

1.2 2023-11-16 | Updates for QAR RIDs:

e Fixed missing cross-link to Listing 24

e Contract number added to the footer

e Referenced documents updated

1.3 2024-03-13 | Updated for v4.3.1:

e Added more information to chapter 11.3.3 (RTEMS integration
layer), including examples description

e Referenced documents updated

14 2024-08-13 | Updated for v5.0.0:

e Extending the deliverables to support SAMRH707F18

e Added missing n7s-bsp- to some examples

e Described the presence of the VERSION file in the source code
package

e Described complete build sequence for all docker images
required to build docker image from scratch

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4
N7 Space Sp. z 0.0. Page: 50f40

1 Introduction

This document provides Software User Manual for the Board Support Package (BSP) deliverables of
the ARM Board Support Package Criticality B Qualification project.

Board Support Package contains the low-level drivers for the peripherals of the SAMV71, SAMRH71
and SAMRH707 microcontrollers and validation test suites for qualification of those drivers.

The Software User Manual is produced as a standalone document and structured according to the SUM
Document Requirements Definition (DRD) given in Annex H of ECSS-E-ST-40C [AD1].

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc.

ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4
N7 Space Sp. z 0.0. Page: 60f40
2 Applicable and reference documents
2.1 Applicable documents
ID Title Reference Rev.
AD1 ECSS — Space engineering ECSS-E-ST-40C 6 March 2009

Software

2.2 Reference documents

ID

Title

Reference

Rev.

RD1

RD2

RD3

RD4

RD5

RD6

RD7

RD8

ARM Board Support Package
Criticality B Qualification
Board Support Package —
Interface Control Document

ARM Board Support Package
Criticality B Qualification
Board Support Package —
Software Design Document

ARM Board Support Package
Criticality B Qualification
Board Support Package —
Software Configuration File

ARM Board Support Package
Criticality B Qualification
Board Support Package —
Coding Standards and Tools

Atmel
SAM V71 Xplained Ultra
USER GUIDE

Microchip Technology Inc.

SAMRH71F20-EK Evaluation Kit

User's Guide
Microchip Technology Inc.

SAMRHT71-TFBGA-EB User Guide

Microchip Technology Inc.

SAMRH707F18-EK Evaluation Kit

User's Guide

ARMB-N7S-BSP-ICD

ARMB-N7S-BSP-SDD

ARMB-N7S-BSP-SCF

ARMB-N7S-BSP-CSTD

Atmel-42408C

DS50002910A

DS50003449A

DS60001744B

Copyright 2024 N7 Space Sp. z 0.0.

ESA Contract No. 4000137041/22/NL/AS/kk

1.7

1.8

1.8

1.5

Rev. C —09/2015

Rev. A —09/2019

Rev. A —11/2022

Rev. B — 02/2022

SPRCE

ARM Board Support Package Criticality B Qualification Doc.

Board Support Package — Software User Manual Date:
Issue:
N7 Space Sp. z 0.0. Page:

3 Terms, definitions and abbreviated terms

This document acronyms and abbreviations are listed here under.

API
BSP
HW
ISR
N7S
RTEMS
SW

Application Programming Interface

Board Support Package

Hardware

Interrupt Service Routine / Interrupt Handler
N7 Space

Real-Time Executive for Multiprocessor Systems
Software

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARMB-N7S-BSP-SUM
2024-08-13

14

7 of 40

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4
N7 Space Sp. z 0.0. Page: 8o0f40

4 Conventions

This Software User Manual describes a software project, therefore it refers to various commands that
can be executed in the terminal and it presents various source code fragments. In order to make those
special blocks more readable, numerous style conventions are used. This chapter quickly summarizes
said conventions.

Short commands and code fragments that are embedded inside normal text paragraphs use this
style with a monospace font.

Commands that are a bit longer or span multiple lines follow the following style:

$ command
Output (optional)

All commands listed in this manual were prepared and validated on Ubuntu 22.04 system. Although any
similar Linux system should support all of the commands used in this document, it is recommended to
use Ubuntu/Debian family.

Directory contents listings follow the same convention:

environment/
L— subfolder/
L— file
lib/
L—a generic comment about contents of Lib/
resources/

Source code blocks use the below style:

if (!Pio_init(LED_PIO_PORT, pio, errCode))
return false;

The syntax highlighting colours used in the above block are defined as follows:

C Preprocessor directive
C Preprocessor include path
C Preprocessor definition
C Preprocessor symbol
Built-in types

User defined types
Function definitions
Function calls

Variable declaration
Struct members

Keywords

Number literals

Other

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

SPRCE

ARM Board Support Package Criticality B Qualification Doc.

Board Support Package — Software User Manual Date: 2024-08-13
Issue: 1.4

N7 Space Sp. z 0.0. Page: 90f40

5 Purpose of the Software

The Board Support Package (BSP) is a set of low-level drivers for peripherals of the SAMV71,
SAMRH71 and SAMRH707 microcontrollers. Each driver is provided as a C library, to be used by
user’s software to access and control the specific device. Table 1 lists all devices supported by the BSP.

The developed software is independent from any other library or operating system and fulfils ECSS
Criticality Category B requirements.

Table 1 — BSP drivers list.

ARMB-N7S-BSP-SUM

Drivers

LE|E
~|I|XI
> ||l
=22
Name Description 5; % %
Adc Analog-to-Digital Controller (ADC) device driver. V4
Afec Analog Front-End Controller (AFEC) device driver. v
Dacc Digital Analog Converter Controller (DACC) device driver. V4 V4
Eefc Enhanced Embedded Flash Controller (EEFC) device driver. v
Flexcom Flexible Serial Communication Controller (FLEXCOM) device driver. NAING
FlexramEcc | FlexRAM Memory and Embedded Hardened ECC Controller (FLEXRAMECC) device driver. VIV
Fpu Floating Point Unit (FPU) device driver. VIV IV
Gmac Ethernet (GMAC) device driver. NAN4
Hefc Hardened Embedded Flash Controller (HEFC) device driver. J IV
Hemc Hardened External Memory Controller (HEMC) device driver. VIV
Hsdramc Hardened SDRAM Controller (HSDRAMC) device driver. V4
Hsmc Hardened Static Memory Controller (HSMC) device driver. VIV
Isi Image Sensor Interface (I1SI) device driver. v
Lpow Low-power modes (LPOW) device driver. v
Matrix Bus Matrix (MATRIX) device driver. |V
Mcan Controller Area Network (MCAN) device driver. JIVIV
Mpu Memory Protection Unit (MPU) device driver. NAINEIN
Nvic Nested Vectored Interrupt Controller (NVIC) device driver. JIVIV
Pio Parallel Input/Output Controller (P10) device driver. NAINEIN
Pmc Power Management Controller (PMC) device driver. JIVIV
Pwm Pulse Width Modulation Controller (PWM) device driver. JIV IV
Qspi Quad Serial Peripheral Interface (QSPI) device driver. N4
Rstc Reset Controller (RSTC) device driver. JIV IV
Rswdt Reinforced Safety Watchdog Timer (RSWDT) device driver. V4
Rtc Real-time Clock (RTC) device driver. JIV IV
Rtt Real-time Timer (RTT) device driver. VAN
Scb System Control Block (SCB) device driver. JIVIV
Sdramc SDRAM Controller (SDRAMC) device driver. v
Spi Serial Peripheral Interface (SPI) device driver. VIVIV
Spw SpaceWire (SPW) device driver. JIV
Supc Supply Controller (SUPC) device driver. VIVIV
Systick System timer (SYSTICK) device driver. JIV IV
Tcm Tightly Coupled Memory (TCM) device driver. VAN
Tic Timer Counter (TC) device driver. JIV IV

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM
Board Support Package — Software User Manual Date: 2024-08-13
SFPHACE Issue: 1.4
N7 Space Sp. z 0.0. Page: 10 of 40
Drivers ~
— | O
SIT|T
> | X |x
===
Name Description f,() 3:) 3:)
Twihs Two-wire Interface (TWIHS) device driver. NAN;
Uart Universal Asynchronous Receiver Transmitter (UART) device driver. NANAN
Wdt Watchdog Timer (WDT) device driver. IV IV
Xdmac DMA Controller (XDMAC) device driver. IV

The drivers provide an interface to perform operations specific for each peripheral on the user side,
while on the hardware side the communication focuses on the configuration of specific registers. Figure
1 presents an example of the BSP deployment as a component of the user’s software.

<<device>>

SAMV71 | SAMRH71 | SAMRH707

<<executable>>

User's SW
User's Component)
B 2t - - B
I
! l
User's Component : i
A <] ! ‘ A\
r . User's Component T |
| 1 C
r==========- B 1 T
: I | 1
BSP !) , \ RN
| |
V \V4 \v4 v
BSP Driver £ | BSP Driver £ | BSP Driver £ |
X Y 4

Figure 1 — BSP deployment example.

Each driver is a facade for the MCU registers and interrupts as seen on generic driver representation on
Figure 2. Provided API should be concise, less error prone and more convenient then a direct
manipulation of a various bits.

Copyright 2024 N7 Space Sp. z 0.0.

ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4
N7 Space Sp. z 0.0. Page: 11 0f40
(BSP (SAM V71/RH71/RH707
- =
(> API =0 S O B >Q—Registers— Peripheral
BSP Driver
)—Callback) ’
Handle interrupts [g]\
(5 Q-—Interrupts— MCU

N /N |)

]

User-provided

ISR

Figure 2 — Generic driver design.

Notice, that the driver does not interact directly with the MCU interrupts — this allows user to integrate
the BSP with any operating system specific ISRs or use BSP in bare-metal implementation.

As an example of such integration, the BSP provides API layer for the drivers to be used as part of the
RTEMS operating system. RTEMS API will be implemented using “adapter” design pattern, as shown
on Figure 3. The RTEMS operating system provides some requirements on the drivers that could be
used as elements of “RTEMS BSP” and the adapters will provide this interface, using BSP Driver as a
implementation backend.

(BSP

£]] @ API]
RTEMS RTEMS BSP API@i Adapter BSP Driver

4®—Callback

Handle interrupts

.

Figure 3 — Generic RTEMS Adapter design.

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4
N7 Space Sp. z 0.0. Page: 12 o0f40

6 External view of the software

BSP is delivered as an archive consisting of source files and SCons-based build system. The software
itself consists of separate library for each of the provided drivers.

The directory structure can be described as follows (for clarity reduced to the most important items):

bsp/
— doc/
L— poxygen configuration file
— environment/ - build and test environment
— configs/
L— SVF configuration files
— docker/
L— Docker image configuration
— 1d/
L— Llinker scripts used by unit and integration tests
— lib/
L— test support Libraries (startup, runtime, etc.)
— SpwRelay/
L— tool for handling SpaceWire Brick
— TestFramework/
L— Bsp specific parts of integration tests Python framework
— lib/ - main source code directory (should be used as include path root)
L— n7s/
L bsp/
L— XYz/ - XYZ driver folder (generic layout, applied to each driver)
— tests/
| L— unit tests of the driver
|— XYZ.h - driver interface (C header file)
L— sconscript

— resources/
— configs/
| L— default BSP configuration files (“chip config”)
L— n7-core/
F— 1ib/ - utility Libraries used across BSP,
L— environment/
L— test support C libraries base, integration tests Python framework
— site_scons/
L— build system and integration testing utilities
— tests/ - integration tests
L— XYz/ - XYZ test folder (generic layout, applied to each test)
— bin/
| L— source code of the C program used in the test
|— SConscript
L— test XYZ.py - test definition file
— validation/
L— validation configuration (specifications, results, etc.)
— README . md
— SConstruct

The Software Configuration File [RD3] contains a detailed list of files in the library package along with
their SHA-256 checksums.

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4
N7 Space Sp. z 0.0. Page: 130f40

7 Operations environment

7.1 General

The BSP is designed to be included and used by other software. Each driver is a separate. Only a C
compiler is required to build the libraries, and a C++ compiler to build unit tests. Libraries depend only
on a basic subset of the C standard library. Example implementation of this subset is provided as a part
of the test environment.

Build environment is described in [RD4] and documented in Docker image configuration in source code.

Note: although each driver is a separate library and does not depend on other libraries as a piece of
software, there might be hardware dependency, that requires some peripherals to be configured together.
The BSP assumes that it is user responsibility to configure subset of peripherals — this way user is free
to use set of BSP drivers or mix BSP drivers with other setup code etc.

7.2 Hardware configuration

The BSW is a set of drivers for selected platforms: SAMV71Q21, SAMRH71F20 and SAMRH707F18.
No special additional requirements are imposed on the user software. Memory usage or processor
performance depends on the mission specific deployment of the BSP and should be checked by the end-
user.

In the project the following development boards were used:

e Microchip ARM SAMV71Q21 microcontroller embedded in Microchip SMART SAM V71
Xplained Ultra (ATSAMV71-XULT) evaluation kit board described in [RD5].

e Microchip ARM SAMRH71F20 rad-hard microcontroller embedded in Microchip
SAMRH71F20-EK evaluation kit board described in [RD6].

e Microchip ARM SAMRH707F18 rad-hard microcontroller embedded in Microchip
SAMRH707F18-EK evaluation kit board described in [RD8].

Additionally, partial support for Microchip SAMRH71F20-TFBGA-EK evaluation board [RD7] is
provided as tests tailoring options.

7.3 Software configuration

Refer to Figure 1 for example of BSP deployment. Each used library should be incorporated into final
image of the user software (static linking).

If asynchronous (interrupt based) features of the BSP are used, user needs to provide a layer for
integrating operating-system specific ISR with calls to BSP drivers.

7.4 Operational constraints

BSP is separated from operating system concerns and does not perform any internal synchronization to
avoid data races. User should ensure that no BSP drivers methods are called from multiple threads/tasks
on the same shared data or user should provide adequate synchronization techniques.

In case user wants to reconfigure working driver, special care needs to be taken regarding disabling
interrupts before changing data shared with user-provided ISR.

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4
N7 Space Sp. z 0.0. Page: 14 of 40

When using BSP on SAMRH707 platform, it’s important to know about the undocumented issue with
DMA access via AHBS port of the core, which causes only 32-bit accesses to be supported. This can
cause memory-related issues when peripherals that use DMA (either explicitly, or implicitly — like
MCAN, SpW or GMAC) have their memory buffers stored in memory only accessible via AHBS port,
like DTCM. Therefore, it’s recommended to make sure that DMA-accessible buffers are placed in other
memories, like SRAM.

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4
N7 Space Sp. z 0.0. Page: 150f40

8 Operations basics

N/A — The software in this project is designed to be included and used by other software. Therefore
there are no predefined operational tasks. Staffing concerns, standard daily operations and contingency
operations are all dependent on the final software based on BSP.

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc.

Board Support Package — Software User Manual Date:
SFPRCE Issue:
N7 Space Sp. z 0.0. Page:

9 Operations manual

Operations manual is not provided for BSP as justified in previous chapter.

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARMB-N7S-BSP-SUM
2024-08-13

14

16 of 40

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4
N7 Space Sp. z 0.0. Page: 17 0f40

10 Reference manual

10.1 Introduction

A complete reference manual of the programming interfaces of each of the modules of BSP is available
as the Doxygen-generated documentation supplied with SDD [RD2] Annex A. It is generated from
source code of the Library and inline comments written for every public API function. Doxygen-style
comments in all public header files used for generation of the reference manual can also be inspected
directly.

General description of the driver interface layout is provided in the ICD [RD1].
Coding convention, standard and tools are described in [RD4].

Commands listed in the following chapters assume Linux host — preferably Ubuntu 22.04 or similar.

10.2 Help method

Each BSP public function is documented with a basic description, the meaning of each input parameter
and return value, and a reminder on how to access error information in case of failure. This information
is available in the Doxygen-generated documentation and in the header files themselves.

The unit-tests of each driver can be treated as function-per-function documentation by example.
Integration tests of drivers can serve as examples of complete programs using the drivers.

While building the BSP, the scons tool have built-in help describing available options:

$ scons -H # provides help for the SCons tool itself
$ scons -h # provides help for the BSP compile options

10.3 Screen definitions and operations

N/A — no graphical user interface or operations in the project.

10.4 Commands and operations

N/A — no commanding in the software (driver library).

10.5 Error messages

Each BSP function that can report an error returns bool (true on success, false on failure) and
accepts optional pointer to variable of ErrorCode type as the last argument. In case of the failure (and
if the pointer is not NULL) the specific error code will be written at the provided memory. Error codes
are driver specific and list of all possible error codes is provided in 13.1.1 — Annex A — Error codes.

The BSP uses assertions to validate input arguments. It is recommended to enable assertions for
development and disable them for release — they detect possible integration errors.

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4
N7 Space Sp. z 0.0. Page: 18 0f40

11 Tutorial

11.1 Introduction

This tutorial serves as an introduction to the Board Support Package for SAMV71Q21, SAMRH71F20
and SAMRH707F18 platforms. Its goal is to demonstrate how to use the provided API to perform basic
tasks related to the peripherals operations. For simplicity the examples covers only some of the drivers,
but presented general approach applies to all drivers. Means to obtain detailed reference for each driver
is described in chapter 10.

This tutorial assumes a basic level of knowledge of the hardware platforms and only provides an
introduction to the BSP, written specifically for software engineers — potential users of the drivers.

11.2 Getting started

11.2.1 Obtaining the source

BSP source can be obtained by extracting delivered ZIP archive as in Listing 1.

Listing 1 — Unpacking BSP source from ZIP file.

‘ $ unzip ARMB-N7S-BSP-SRC-v5_0_©.zip # assuming version 5.0.0

Or (recommended option on Linux as BSP uses symbolic-links) from TAR BZIP2 - Listing 2.

Listing 2 — Unpacking BSP source from TAR BZIP2 file (recommended for Linux).

‘ $ tar -xvf ARMB-N7S-BSP-SRC-v5_ @ ©.tar.bz2 # assuming version 5.0.0 ‘

Source archive contains VERSTON file, which provides information about release of the package. It is
used by the build system for producing reports. Build system can also use direct git commands to
obtain version information, if the source code is put under configuration control using that tool. This
allows for better tracking of reports for specific modification of the source. To use this feature, the
VERSION file must be removed from the source code.

11.2.2 Using the build environment in Docker

Using Docker is the easiest way to reproduce necessary software environment. Otherwise user needs to
install the dependencies from [RD4], using operating-system specific packages, which is out of the scope
of this document. The minimal set consists of SCons build tool and ARM GCC compiler, but executing
tests or performing static analysis of the code requires more dependencies to be installed.

Docker environment is distributed with build environment in a form of Docker image.

Listing 3 uses the Docker image provided as deliverable (it might take minutes to perform the import).

Listing 3 — Importing BSP build environment Docker image.

$ docker image load --input ARMB-N7S-BSP-ENV-v5_@ ©.tar.bz2 # assuming version 5.0.0
Loaded image: n7s/arm/bsp:v5.0.0

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4
N7 Space Sp. z 0.0. Page: 19 0f40

Alternatively, image can be built ,,from scratch” (assuming all packages are still available) using
Dockerfile provided in BSP source, as in Listing 4. Note that two images are built in that listing — one
is a preliminary image (“core”) which is not used later, but required to build the primary image itself.

Listing 4 — Building BSP Docker image.

assuming version 5.0.0 in the commands below
cd <path/to/bsp/source>/resources/n7-core/environment/docker
docker build -t n7s/n7-core/n7-core:arm-bsp-v5.0.0 .
cd <path/to/bsp/source>/environment/docker
docker build --build-arg REGISTRY=n7s \
--build-arg=BASE_IMAGE_TAG=arm-bsp-v5.0.0 \
-t n7s/arm/bsp:v5.0.0 .

T s R

After setting up the image, user might use Docker containers as in Listing 5.

Listing 5 — Executing command in BSP build environment Docker container.

‘ $ docker run --rm -v $PWD:$PWD -w $PWD -u $(id -u):$(id -g) n7s/arm/bsp:v5.0.0 <COMMAND> ‘

This command will mount current directory and execute container with privileges of current user. It is
recommended to call it this way always in the root of the BSP source directory.

It can be very convenient to set up this command as an alias in Linux shell as in Listing 6. This will
allow for a quick execution of other commands inside containers.

Listing 6 — Shell alias for executing command in build environment Docker container.

$ alias docker-here='docker run --rm -v $PWD:$PWD -w $PWD -u $(id -u):$(id -g)°' ‘

For example, to check correctness of the image and BSP source, user might execute commands like in
Listing 7 (or without alias as in Listing 8) and expect similar output.

All following commands in this chapter assume that there are either executed on properly configured
environment, or are proceeded with docker run alias.

Listing 7 — Example command executed in BSP build environment Docker container.

$ cd <path/to/bsp/source>

$ docker-here n7s/arm/bsp:v5.0.0 scons -h
scons: Reading SConscript files ...

...

... other help lines ..

...
Board Support Package for SAMV71Q21 and SAMRH71F20 - v5.0.0
Copyright N7 Space sp. z 0.0. 2018-2024

...

Listing 8 — Example command executed in BSP Docker container.

$ cd <path/to/bsp/source>
$ docker run --rm -v $PWD:$PWD -w $PWD -u $(id -u):$(id -g) n7s/arm/bsp:v5.0.0 scons -h
same output as in Listing 7

11.2.3 Building the drivers

This section assumes that the BSP main directory is the current working directory. In order to build a
static version of a selected driver in “debug” configuration, command from Listing 9 should be executed.

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4
N7 Space Sp. z 0.0. Page: 20 of40

Listing 9 — Build tool configuration for building driver in debug mode (without optimalization).

| $ scons build=debug checkCode=0 n7s-bsp-pio-samv71qg21 |

In the listing the P10 driver for SAMV71Q21 platform was selected. The checkCode=0 flag speeds
up the build process by disabling static analysis tools. To build an optimized "release™ variant (with the
optimization flags set to —-02, other options include Os and 01), command from Listing 10 should be
executed. Assertions can be kept for “release” build, but on the example they are disabled.

Listing 10 — Build tool configuration for building driver in release mode (with optimization).

‘ $ scons build=release checkCode=0 optimization=2 disableAsserts=1 n7s-bsp-pio-samv71q21 ‘

Each driver can be built using <peripheral>-<platform> naming scheme. User can specify
multiple drivers or even bsp-<platform> to build all available drivers for selected platform. Calling
scons without specifying target is not supported. Omitting —<platform> part of the target will build
it for both platforms.

After completion of the build command, the requested driver can be found in build/<build
type>/<platform>/install root/lib/ folder, as shown on Figure 4.

build/
L— release/ - build type
L— samv71q21/ - target platform
L— install_root
L— 1ib
L libn7s-bsp-pio.a - the driver Library

Figure 4 — Build directory layout.
11.2.4 Integrating BSP with user project

To use the BSP in user project, following options need to be set in the target build system:

e Target platform compiler switch (set for the pre-processor/compiler).
o Include path (directory to be searched for the BSP header files, set for the compiler).
e Library path (directory to be searched for the built libraries, set for the linker).

Assuming BSP points to the root BSP directory, those are:

e Platform switch: N7Ss BSP <PLATFORM> (e.g. N7S_TARGET SAMV71Q21)
e Include path: <BSP>/1ib
e Library path: <BSP>/build/<build type>/<platform>/install root/lib

Listing 11 shows an example of compiling user file using GCC with include path and SAMV71Q21
platform configured.

Listing 11 — Compiling with GCC and include path example (BSP installed in /opt /bsp).

$ arm-none-eabi-gcc -c \
-I/opt/bsp/lib \
-DN7S_BSP_SAMV71Q21
-0 user.o user.c # other compiler options

Listing 12 shows linking the user project using GCC linker (linking with P1O driver as an example).

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4
N7 Space Sp. z 0.0. Page: 210f40

Listing 12 — Linking with GCC example (BSP compiled for SAMV71Q21 in /opt /bsp).

$ arm-none-eabi-gcc -L/opt/bsp/build/release/samv71q21l/install_root/lib \
-1n7s-bsp-pio
-0 user.elf \
user.o # other compiler options

11.2.5 Recommended compilation options

While compiling the user file it needs to be compiled in compatible way to the BSP. User might also
want to compile the BSP outside of the SCons build system (to integrate the BSP into larger project).

Listing 13 shows the recommended compilation options (without optimization options) to compile BSP
and user files for the target platform.

Listing 13 — Compilation options for SAMV71Q21/SAMRH71F20/SAMRH707F18 using GCC.

$ arm-none-eabi-gcc --std=c99 \

-mlittle-endian \
-mthumb \
-mcpu=cortex-m7 \
-mfloat-abi=hard \
-mfpu=fpv5-di6 \
-Dasm=__asm__ \

other options

The include path and pre-processor related options listed in 11.2.4 also needs to be included.
11.3 Using the software on a typical task

11.3.1 Example program — LED blink

The example program presented in this chapter will introduce the user to basic concepts of working with
the BSP drivers. The example describes a program that blinks one of the diodes available on the
development boards.

Program starts with the inclusion of BSP headers for drivers of required modules (Listing 14):

e PlO — Parallel Input/Output Controller — to control the state of the pin connected to the diode,
e PMC — Power Management Controller — to enable power on the pin port,
o WDT — Watchdog Timer — to disable the watchdog timer.

Listing 14 — LED example — includes.

#include <n7s/bsp/Pio/Pio.h>
#include <n7s/bsp/Pmc/Pmc.h>
#include <n7s/bsp/Wdt/Wdt.h>

Note the complete path of the includes — see 11.2.4 for details on include path setting. This path reduces
the chance of conflict on header files” names.

The development boards for SAMV71Q21, SAMRH71 and SAMRH707F18 have diodes connected to
different pins. Listing 15 presents platform-specific definitions to be used in the example.

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4
N7 Space Sp. z 0.0. Page: 22 0f40

Listing 15 — LED example — pre-processor defines.

#if defined(N7S_TARGET_SAMV71Q21)

#define LED_PIO_PORT Pio_Port_A

#define LED_PIN_MASK PIO_PIN_23

#define LED_PMC_PERIPH Pmc_Peripheralld_PioA
#elif defined(N7S_TARGET_SAMRH71F20)

#define LED_PIO_PORT Pio_Port_B

#define LED_PIN_MASK PIO_PIN_19

#define LED_PMC_PERIPH Pmc_Peripheralld_PioA
#elif defined(N7S_TARGET_SAMRH707F18)
#define LED_PIO_PORT Pio_Port_B

#define LED_PIN_MASK PIO_PIN_11

#define LED_PMC_PERIPH Pmc_Peripheralld PioA
#else

#error "Missing N7S_TARGET_* macro”

#endif

Note the N7S TARGET macro being used — this macro is necessary for proper integration of the BSP
headers, so it as well can be used by the example itself.

As the processors start with watchdog enabled, a procedure for disabling it might be useful for simplest
examples (it is not recommended to disable watchdog in critical software). Listing 16 presents a basic
watchdog disable procedure. It is a common BSP use pattern — initialize a driver using its _init
procedure and then configure the peripheral using setConfig call. Note that although only
isDisabled field is needed to be set in the configuration structure, it is filled with all values — this is
a recommended approach to ensure consistent driver and peripheral setup

Listing 16 — LED example — disable watchdog.

static void disableWatchdog(void)
{
Wdt wdt;
Wdt_init(&wdt);
const Wdt Config config = {
.isDisabled = true,
.1sFaultInterruptEnabled = false,
.1SResetEnabled = false,
.counterValue = OxFFFu,
.deltaValue = OxFFFu,
.1sHaltedOnDebug = false,
.1SHaltedOnIdle = false,
#ifndef N7S_TARGET_SAMV71Q21
.doesFaultActivateProcessorReset = true,
#tendif
}s
Wdt_setConfig(&wdt, &config);

}

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4
N7 Space Sp. z 0.0. Page: 230f40

Drivers provide just an interface to the peripheral registers, so they do not need to be de-initialized or
explicitly destroyed. This also means that further in the code another Wdt object could be initialized and
used to reconfigure the same WDT module. It is recommended though to use the same object through
all the calls in the program, as some drivers might have additional internal state. In the example the
WDT will never again be manipulated by the program, hence the Wdt object can be a stack variable.

The next procedure in the example, shown on Listing 17, is responsible for configuration of the PIO and
PMC modules so they will allow for diode manipulation.

Listing 17 — LED example — P1O configuration.

static bool initPio(Pio* const pio, ErrorCode* const errCode)
{
if (!Pio_init(LED_PIO_PORT, pio, errCode))
return false;

Pmc pmc;
Pmc_init(&pmc, Pmc_getDeviceRegisterStartAddress());
Pmc_enablePeripheralClk(&pmc, LED_PMC_PERIPH);

const Pio Pin_Config pinConfig = {
.control = Pio_Control Pio,
.direction = Pio Direction Output,
.pull = Pio Pull None,
#ifdef N7S_TARGET_SAMV71Q21
.filter = Pio_Filter_None,
.1sMultiDriveEnabled = false,
.irq = Pio_Irqg_None,
.driveStrength = Pio Drive_ Low,
#telse
.i1sOpenDrainEnabled = false,
.irq = Pio_Irq_EdgeFalling,
.i1sIrqEnabled = false,
.driveStrength = Pio_Current_2m,
#endif
.1sSchmittTriggerDisabled = false,

}s

return Pio_setPinsConfig(pio, LED_PIN_MASK, &pinConfig, errCode);
}

Function signature follows the pattern from the BSP — it returns Boolean indication of success and has
additional argument for detailed error code. The error code pointer is passed down to BSP function calls.
Notice, that although Pio driver configures the PIO controller, the explicit configuration of the PMC
module is required. The relation between PIO port and PMC peripheral is fixed and could be
automatically handled by the BSP, but the drivers are by design independent — Pio driver interacts with
P10 and PIO only. This design trade-off allows for mixing the drivers with other means of platform
configuration (different drivers, direct register manipulation etc.). It also solves some issues when the
order of various peripherals configuration needs to be controlled by the user. It is up to the user to
determine the set of modules that need to be configured to achieve required functionality.

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4
N7 Space Sp. z 0.0. Page: 24 of 40

Next, the example contains an abstraction layer for LED control —shown on Listing 18 (the development
boards have different meaning of HIGH state for LED control).

Listing 18 — LED example — LED on/off procedures.

static void setLedOn(Pio* const pio)
{
#ifndef N7S_TARGET_SAMV71Q21
Pio_setPins(pio, LED_PIN_MASK);
#else
Pio_resetPins(pio, LED_PIN_MASK);
#tendif
}

static void setLedOff(Pio* const pio)
{
#ifndef N7S_TARGET_SAMV71Q21
Pio_resetPins(pio, LED_PIN_MASK);
#else
Pio_setPins(pio, LED_PIN_MASK);
#endif
}

Mentioned abstraction layer is than used to implement crude blinking mechanism shown on Listing 19.

Listing 19 — LED example — blink procedure.

static void crudeDelay(const uint32_t delay)
{
for (uint32_t i = @; i < delay; i++)
asm volatile("nop" ::: "memory");

}

static void blinkLed(Pio* const pio, const uint32_t delay)
{

setLedOn(pio);

crudeDelay(delay);

setLedoff(pio);

crudeDelay(4u * delay);

}

Finally, the main procedure is presented on Listing 20. Notice the comment showing where the possible
error handling procedure could be located. The code returned from the function could be logged or used
to determine specific recovery action. The pattern used through the BSP allows to easily gather or types
of errors from various drivers on various levels into single handling procedure, or to create multiple
procedures that even pass unhandled errors to higher levels etc.

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4
N7 Space Sp. z 0.0. Page: 250f40

Listing 20 — LED example — main procedure.

int main()

{
disableWatchdog();

ErrorCode errCode = ErrorCode_NoError;
Pio pio;
if (!initPio(&pio, &errCode))

return (int)errCode;

setLedOff (&pio);

while (true)
blinkLed(&pio, 500000u);
}

The full code of this example is available inside the source code archive in examples/LedBlinker
folder. Binary image of the example can be built using led-blinker.elf target passed to SCons.

For further working examples please refer to the code of unit and validation tests. Those present the
proper order of the modules configuration and common use case examples.

11.3.2 Asynchronous operations

Various peripherals of the SAMV71Q21/SAMRH71F20/SAMRH707F18 support performing
operations executed asynchronously to the program instruction processing. For example executing
transmission using external interfaces etc. The BSP provides two ways of handling such asynchronous
operations: by polling the status of the peripheral or by callbacks called from interrupts processing
routines. The availability of each of the methods depends on the hardware capability and can vary
between drivers, but whenever possible BSP delivers both.

Figure 5 presents generalized sequence of the polling mechanism. The user code calls the required
methods of the driver to start the asynchronous operation and then continues to check (poll) the status
of the peripheral.

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4
N7 Space Sp. z 0.0. Page: 26 of 40
User code BSP XYZ driver

Asynchronous operation with polling B‘

I
—

XYZ_startOperation()

f Loop J

[unti} operation finishes]

I
1
I
I
XYZ_getStatus()
>

(Oopt
Pt
[opefation has results]

XYZ_getResult()

-

User code BSP XYZ driver

Figure 5 — Asynchronous operation with polling.

Listing 21 presents basic example using UART driver. The method in the example calls Uart write
procedure to send a single byte over UART interface and then polls on Uart isTxEmpty until the
transmission is finished. Notice, that BSP provides its internal polling mechanism, that allows to
sequence multiple Uart write calls — each will wait for the peripheral to become available before
writing. In the example code waits for Uart isTxEmpty inthe loop, but user of course can implement
it differently, checking the state from some operating system scheduled task or even not checking it at
all until the status of the peripheral is required elsewhere.

Listing 21 — Asynchronous operations example — polling.

static bool uartPolling(Uart* const uart, ErrorCode* const errCode)
{

const uint8 t data = 0x42u;

if (!'Uart write (uart, data, UART_TIMEOUT, errCode))
return false;

while (!Uart_isTxEmpty (uart))
{

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4
N7 Space Sp. z 0.0. Page: 27 of40

Figure 6 presents the generalized callback-based approach for handling asynchronous task. The BSP
provides a method that can be passed a handler — a pair of pointer to function (callback) and user data
to be passed to the pointed function. Those methods register the handler in internal BSP structures and
it will be called from the interrupt handling procedure when the operation finishes. It is important to
remember, that the handler function will be called from the context of the ISR — user needs to ensure
proper synchronization of access to shared data (if needed). Also note, that the ISR itself is user-provided
— this allows BSP to be used in different environment: bare metal or various operating systems, as long
as the user provides proper implementation of the interrupt handling.

User code BSP XYZ driver User-provided ISR

Asynchronous operation configuration and start
(called from user application context)

|
l
Opt |
|
|

XYZ_registerHandler(Handler)
>

Asynchronous operation status reporting
(called from ISR context)

XYZ_handlelnterrupt()

I
I
BSP XYZ driver User-provided ISR

Figure 6 — Asynchronous operation with ISR callbacks.

Listing 22 presents an example of interrupt based transmission using UART. The user prepares
ByteFifo (queue) with data to be sent and calls Uart writeAsync, passing to it handler that is
relying on the user specific data. The data passed to handler can be NULL, as it is not interpreted in any
way by the BSP and only passed to user provided function. The function pointer itself also can be NULL
— in such case user will not be informed about end of the transmission, but interrupt handling must still
be implemented for BSP to properly process data queue. User can mix polling techniques to obtain status
of the peripheral, but this is not a recommended approach as it might lead to data races — implementing
the handler is a better approach when the moment of the end of the operation must be known.

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4
N7 Space Sp. z 0.0. Page: 28 0f40

Listing 22 — Asynchronous operations example — callback.

struct UserData {
uint8_t someData;
}s

static ByteFifo* endOfTransmissionCallback (void* const data)
{
struct UserData* user = (struct UserData*)data;
user->someData = 42u;
return NULL;

static void uartHandler (void)

{
const Uart TxHandler handler = ({
.callback = endOfTransmissionCallback,
.arg = &userData,

}s

Uart writeAsync (&uart, createByteFifo (), handler);

}

In some cases, like in the UART example, BSP handlers provide additional features, apart from simple
informing about completion of the operation. As shown in the example, the handler can provide next
gueue to be sent, which transmission will be immediately started, without a need for second
Uart writeAsync call. Such approach allows for streamlining of the UART transmission.

Error handling in interrupt bases asynchronous operations requires registering additional handler. Some
drivers accepts that driver in the method that start the operation itself, but in case of the UART a call to
Uart registerErrorHandler is required — see Listing 23. This is also a handler that will be
called from the context of ISR processing.

Listing 23 — Asynchronous operations example — error handling.

static void errorCallback(const Uart ErrorFlags* errorFlags, wvoid* arg)
{
struct UserData* user = (struct UserData¥*)arg;
if (errorFlags->hasParityErrorOccurred)
user->someData = 0Ou;

static void registerErrorHandler ()

{
const Uart ErrorHandler handler = {
.callback = errorCallback,
.arg = &userData,

}s

Uart_registerErrorHandler (&uart, handler);

}

The last necessary part of the interrupt based processing that user needs to provide is the ISR
implementation itself. Listing 24 shows a simple bare metal implementation (as used in unit and
validation tests of the BSP).

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4
N7 Space Sp. z 0.0. Page: 29 o0f 40

Example in Listing 24 implements a ISR by following a common ARM naming conventions which
allows the linker to assign the ISR to proper location in interrupt vector. Uart handleInterrupt
is called by the handler and inside it BSP will perform all necessary UART related operations and if
needed call user provided handlers. Notice that in case of the bare metal implementation, as seen on the
listing, it is the user’s responsibility to clear pending interrupts (in this case Nvic driver from the BSP
was used). The example is provided in Listing 24.

Listing 24 — Asynchronous operations example — ISR implementation.

void UART4 Handler (void)

{
ErrorCode errCode = ErrorCode NoError;
if (!Uart_handleInterrupt (&uart, &errCode))
{

}

Nvic_clearInterruptPending (Nvic_ Irqg Uart4);

}

Important difference that can be noticed between the polling and interrupt based examples is about
lifetime and visibility of the Uart driver object in the code. In case of the polling based example, the
object can be passed to the function and its lifetime only needs to last to the end of the function. In case
of the interrupt based code, the object lifetime must last at least to the end of the ISR processing. The
object itself must also be accessible by the ISR — in case of the presented bare metal implementation it
needs to be a static variable (global to the file). Special care must be taken by the user when dealing
with this kind of global object and lifetime of the objects during asynchronous operations.

For further working examples please refer to the code of unit and validation tests. Those present the
proper order of the modules configuration and common use case examples.

11.3.3 RTEMS integration

BSP can be used with RTEMS operating system and applications built with RTEMS. Adapters and
configuration files necessary to build RTEMS with BSP are provided. BSP start hooks use functions
from Pmc and Scb BSP modules to configure processor clocks and cache according to selected tailoring.
Minimal set of BSP modules needed to compile RTEMS includes:

e Systick

e Ritc

e Pmc

e Uart (+ Flexcom on RH71 and RH707)
e Pio

e Nvic

e Scb

o Utils

e Eefc (for V71)

RTEMS integration layer provides drivers and adapters for several BSP components that can be used
through RTEMS API functions. Systick module is used as RTEMS scheduler clock and should not be
manipulated by user directly. Rtc module can be used through RTEMS clock manager API, Uart selected

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4
N7 Space Sp. z 0.0. Page: 300f40

in tailoring config is used as RTEMS simple console, rest of Uarts available on microcontroller can be
used directly (through Uart/Flexcom BSP modules) for other purposes.

If other BSP modules or other source files that support RTEMS BSP are required they can be added to
bsp modules array in script build-rtems.sh and their sources to
rtems build spec/n7bsp/obj.yml if they should be compiled for all platforms or to
rtems build spec/n7bsp/target-*.yml if they should be compiled only for a selected
target. There are several software prerequisites that need to be fulfilled to use BSP with RTEMS:

1. Working RTEMS toolchain (gcc with newlib and binutils),

Compatible RTEMS source distribution (version from SMP QDP is compatible),
RTEMS source builder (RSB),

WAF build tool,

RTEMS WAF support library,

6. RTEMS Tools.

a bk~ own

All tools mentioned above can be downloaded and installed directly by the user or obtained using either
pre-built Docker image or Docker image built by the user using provided Dockerfile.

To build Docker image with tools needed to compile RTEMS and BSP:

$ cd <path/to/rtems-bsp/source>/environment/docker
$ docker build -t n7s/arm/rtems-bsp:v5.0.0 . # assuming version 5.0.0

Resulting Docker image contains RTEMS source code, RSB, RTEMS WAF, and RTEMS tools
repositories checked out to commits matching RTEMS SMP QDP. Image also contains RTEMS
toolchain built using RSB. Copy of WAF build system tool is provided in RTEMS source code
repository. Before building RTEMS system itself user can tailor RTEMS and BSP configuration. Basic
RTEMS configuration is stored in files (one file per each platform):

rtems_build_spec/config-*.ini ‘

Compiler flags and scope of build can be adjusted there.

BSP configuration is stored in two places, first one contains default configuration and should not be
modified by the user (it can be used as a reference to determine which options are available and may
require tailoring — defaults will work for development boards used in project):

resources/n7bsp/resources/configs/default-*.conf |

Second set of BSP configuration files contains RTEMS or board-specific options and should be modified
according to user preferences. Options from tailoring files can override default settings placed in
matching section under matching names. Tailoring configuration is stored here:

src/bsps/n7sbsp/config/tailoring-*.conf ‘

Important options that should be checked are clock and memory configuration.

Section [rtems.bspinit] contains N7S BSPINIT CONFIGURE PMC switch (with default
value 1) that changes behaviour of BSP initialization hook executed during application startup.
Applications that are standalone — loaded into processor’s internal flash memory or booted from external
memory should leave this enabled and configure PMC module in order to run. Applications loaded by
bootloader (for example BSW) to external memory (especially when executing code from SDRAM)
should be compiled with N7S BSPINIT CONFIGURE PMC option set to 0. Reconfiguration of PMC

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4
N7 Space Sp. z 0.0. Page: 310f40

settings that impact HEMC/HSDRAMC clock (for SAMRH71F20) or SDRAMC clock (for
SAMV71Q21) when executing code from external SDRAM can lead to program crash and lockup due
to processor being unable to fetch instructions. If application is required to change PMC settings it
should execute configuration procedure from one of internal processor memories and make sure that
SDRAM is accessible after clock changes. Note that settings specified in [pmc] section are applied
only if N7S BSPINIT CONFIGURE PMC is set to 1. Settings in [core] section must be set to
correct values (left by the bootloader) even if PMC is not configured be application as they are used in
Systick rate and UART baud rate calculations.

Second important tailoring option is memory configuration. Default tailoring file contains several pre-
defined configurations that can be changed by adjusting configuration option in section
[rtems.memories]. Default configuration is int £1ash that is useful for standalone applications
booted from internal processor FLASH without the use of bootloader. Options intsram and sdram
are for applications running from internal processor SRAM memory and external SDRAM respectively
and they are compatible with use of bootloader that configures PMC and memory controller before
launching application. Custom sets of memory region aliases can be added by the user by adding section
[rtems.memories.XYZ] and setting configuration = XYZ in section
[rtems.memories] where XYZ isthe name of the configuration. New section should define aliases
for all memory regions specified by RTEMS. Available memories are defined in file
rtems_build spec/n7bsp/linkcmds.yml and custom values can be added there if required.

Section [uart] contains settings for UART used as basic RTEMS console (standard input and output).

After configuration is adjusted, RTEMS system may be compiled by executing following command in
main repository directory.

‘ $ docker-here <image-with-rtems-toolchain> ./build-rtems.sh -p <platform>

where <platform> can be samv71g21, samrh71f20 or samrh707f18.

Bash script is provided for convenience and executes following procedure (in temporary docker
container)

1. Copy RTEMS configuration file for selected platform into the container

Copy build spec files (YAML) for BSP into the container

Copy BSP adapters and drivers into the container

Copy selected BSP modules source code into the container

Invoke WAF build tool to configure and compile RTEMS system

Install compiled RTEMS system into directory outside Docker container (build-<platform>)
Modify pkg-config metadata file to point to installed RTEMS

Nookrwd

After RTEMS is compiled, example applications can also be built:

‘ $ docker-here <image-with-rtems-toolchain> ./build-apps.sh -p <platform>

where <platform> can be samv71g21, samrh71f20 or samrh707f18.

This command will invoke WAF build tool in temporary Docker container to compile example
applications using previously built RTEMS and install them in directory build-apps-<platform>.

Source code of example applications is in directory test_apps.

There are 3 examples available

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4
N7 Space Sp. z 0.0. Page: 320f40

1. n7_ticker — Most basic example built for all platforms which creates two RTEMS tasks. One
task sends event every 1/3" of a second, other tasks receives the events and prints date and time
obtained from RTC.

2. n7_uart_example — Also creates 2 tasks. One task sends event every 3 seconds. Other task
configures UART and receives events from UART irg handler and first task. Every event from
UART irqg triggers received data processing, event from first task triggers transmission of
current status using UART. Data processing is simple received byte counting and calculating
sum of all received bytes excluding newline characters (0x02).

3. n7_spw_example — Available only for SAMRH71F20 and SAMRH707F18 as it requires
SpaceWire support. This example tests SpaceWire links connected in external loopback — it
requires that loopback cable is connected between SpaceWire LINK1 and LINK2 available on
microcontroller. There are 3 RTEMS tasks created: CTRL, TX and RX. RX and TX tasks have
2 data buffers each.

- CTRL task sends start event to RX task and waits for initialization.

- RXsets up buffer for reception and sends RX ready event to CTRL.

- CTRL sends start event to TX task.

- TX sets up buffers, send lists, starts transmission and sends TX started event to CTRL.

- CTRL now listens for various events (packet transmitted/received, data verification failure,
RX/TX complete).

- RX listens for Buffer activated/deactivated events sent by SPW IRQ, upon reception of
activated event next buffer is set up. Upon reception of deactivated event current buffer is
verified (only 4 first bytes are checked, rest should be zero) in case of failure RX fail event
is sent to CTRL. If maximum number of packets is received RX complete event is sent to
CTRL. If terminate event is received task terminates.

- TX listens for sendListActivated events sent by SPW IRQ. Upon reception of activated
event next send list is set up. If maximum number of packets is transmitted TX complete
event is sent to CTRL. If terminate event is received task terminates.

- When CTRL receives TX and RX complete events it exits main loop and sends terminate
event to RX and TX, prints test results and terminates.

- SPW IRQ sends RX packet and TX packet event to CTRL on EOP reception and
transmission respectively (used to count packets), it also sends sendList and buffer status
updates to TX and RX to swap buffers when needed.

By default 1024 data packets are transmitted (each consisting of 16384 bytes) which translates
to 16 MiB of data for SAMRH71 and 16384 packets (each consisting of 4096 bytes) which
translates to 64 MiB of data for SAMRH707. Number of packets and their sizes can be
customized by editing system.h file in example directory. Program calculates and prints
statistics after performing the test. When running from integrated FlexRam memory it should
achieve data transmission speeds close to theoretical maximum for SpaceWire link (160 Mbps)
for SAMRH71 and about 106 Mbps for SAMRHT707. Transmission rate for SAMRH707 is
slower due to usage of smaller packets — processing overhead is bigger. Smaller packets are
required to fit in available memory.

11.3.4 BSP in MPLAB environment

The BSP can be integrated with Microchip MPLAB IDE in two ways:

1. by linking the pre-built objects of the BSP,
2. by using BSP MPLAB project.

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4
N7 Space Sp. z 0.0. Page: 330f40

The first option guarantees that the target project relies on the same object files as the one that passed
the tests and other verification activities. But it might not be the most convenient one, especially when
debugging is necessary or some modifications of the BSP are foreseen. Hence the other option — the
BSP provides an MPLAB project which allows it to be opened inside MPLAB X IDE, with all needed
source files available. Then such project can be connected to user target project and built together. But
user caution is necessary — the BSP built using MPLAB compiler was not tested. The MPLAB compiler
and compiler used by the BSP are compatible, but to keep the pre-qualification status it is recommended
to use the first mentioned MPLAB integration approach when creating the final product.

It is worth reading 11.2.4 first, to get the general requirement on reusing the BSP inside user’s project.
The LedBlinker example (available in BSP source package and described in 11.3.1) can be used to check
user’s MPLAB project configuration.

11.3.4.1 Using pre-built BSP in MPLAB

Unpack the ARMB-N7S-BSP-0OBJ and ARMB-N7S-BSP-SRC in a folder accessible by MPLAB. It’s
recommended to put those files on the same mount point/hard drive as target projects files, since
MPLAB may have issues with using them if they are somewhere else.

In the MPLAB project that will use BSP:

1. Add unpacked libraries to the project.
o Right-click the project in Projects tree and open its Properties (Figure 7).
o Go to “Libraries” section and click “Add Library/Object File...” (Figure 8).
o Select required libraries and add them to the project.

Projects x| Files Services Classes =1
o8 Build

+Q M75-

-G N7S Clean and Build

+Q N75 Clean

Batch Build...
Set Configuration >

Mew >
Add >

Set as Main Project
Find...

Locate Headers

Run
Debug
Step into

Make and Program Device
Projects > | =
Close

Open Required Projects >
Code Assistance >

Analysis >

Show Code Coverage Summary

Versioning >

Histary > ke

Properties lé G|
-8 Linker Reserved Program: 2097157 - Used 1

Figure 7 — Accessing MPLAB project’s properties.

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM
Board Support Package — Software User Manual Date: 2024-08-13

SFRACE Issue: 1.4

N7 Space Sp. z 0.0. Page: 34 0f40

Categories: ’)
General Libraries:
File Incusion/Excdusion Ttem Configuration Indude Add Library Project...
-9 Conf: [n7bsp] sami7iqlrckasefibrZs bsppioa | | e
i) samv71q21-release/ib EERE LT - [Add Library/Object File... I

- i‘ F:/MPLAE_BSP /BSP-samv71q21-release libn7s-bsp-pmc.a

1 itt-in Library. .
ﬂ F:/MPLAB_BSP BSP-samv71q21-release libn7s-bsp-wdt.a 'kgd ey

"2 Building .
B~ @ %C32 (Global Options) Duplicate
. xe3zas Remove
xc32-goe
xc32-g++ Up
xc32-4d Donn
xc32-ar
Analysis

Figure 8 — Adding libraries to MPLAB project.

2. Add to the include directories: 1ib and resources/n7-core/1ib subfolders of the SRC.
o Go to “XC32 (Global Options)” and click on “Common include dirs” option (Figure 9).
o Add paths with BSP headers to the list (Figure 10).

Categories:
o General Options for xc32-gec (v4.40)
------ @ File InclusionExdusion Option categories: | Reset
=~ @ Conf: [n7bsp
2 Loading Stack Smashing Protector No Stack Protector o
2@ Libraries Override default device support Do not override -
I 8. Bulding] Don't delete intermediate files O
| = @ XC32 (Global Options) |
i C3d-as Link-Time Optimizations 0O
¥c32-gec Use GP relative addressing threshold (n/a)
AN I Commaon include dirs
xc324d 1
xc32-ar Data TCM size in bytes
Analysis Instruction TCM size in bytes

Locate Stack in data TCM O

Additional options:

Option Description Generated Command Line User Comments

Add 'dir' to the list of shared include directories for compilers and assembler. I:

Relative paths are from MPLAB X project directory.

Manage Configurations...

Manage MNetwork Tools...

Cancel Apply Unlock Help

Figure 9 — MPLAB project properties.

Commeon include dirs

Destroy Daown Up Browse...
. \BsPYibin7s
..\BSPYresources\n7-corelib

Relative paths are from
MPLAB X project OK Cancel

A A

Figure 10 — MPLAB project's include directories list (BSP as standalone library).

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4
N7 Space Sp. z 0.0. Page: 350f40

3. Add required N7S_ TARGET <MCU> macro to preprocessor directives (see also 11.2.4).
o Go to target compiler’s settings (xc32-gcc for C, xc32-g++ for C++) and for each compiler:
= Select “Preprocessing and messages” in Option categories (Figure 11).
= Click on "Preprocessor macros” field and add the macros to the list.

Categories: Opti For <32 4,40
_____ > General ptions for xc32-gee (v4.40)
----- 2 File Inclusion/Exclusion Option categories: | General [
- @ Conf: [n7hsp General
L & Loading Enable unaligned acdoptimization
~ @ Libraries Have symbols in IF'reprocessing and messages
i @ Building Enable Anp 10
H nable
= @ X¥C32 (Global Options) wR
@ xc3Z-as solate each function in a section
- @ xc3Zgoo I Place data into its own section
- O WC32-0++
------- LA Enable toplevel reardering
e @ xc324d
@ xc3Zar Use indirect calls
Options for xc32-goc (v4.40)
Option categories: | Preprocessing and messages - Reset

Preprocessor macros 1

Include directories

'/ Preprocessor macros

Destroy Down Up
N75_TARGET_SAMV710Q21
{Enter string here)
(2)
)
OK Cancel

‘ ‘ ~ — — — =er's -0 option.

Figure 11 — MPLAB project's preprocessor options.
11.3.4.2 Using BSP as MPLAB project

Note: read about the verification limitations listed in parent chapter (11.3.4).

The ARMB-N7S-BSP-SRC deliverable provides archive, that contains dedicated MPLAB project — one
for each supported platform. User can unpack selected project and open itin MPLAB — it should provide
complete BSP in a form of library project (Figure 12).

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4
N7 Space Sp. z 0.0. Page: 36 of 40
Projects x| Files | Services | Classes Projects x| Files | Services | Classes
(SR = N7 -B5P-SAMV71Q21 L om-E wdt
E—J Header Files ¥dmac
EIE Afec -- Important Files
E] Afec.h -- Linker Files
E] AfecRegisters.h E\\ Source Files
[—]E Dacc B Afec
] Dacch) Afecc

-] DaccConstants.h
-] DaccRegisters.h
-] DaccSampleFifo.h
[—]E Eefc

E] ChipConfig.h
-] Eefch

[EefcRegisters.h
[]—-- Fpu

[]—-- Gmac

w-F Is - [F KszB061.c
E-F Lpow . [vscB540.c
3
3
0

i-[iF Mean - Isi

]"' Mpu E:I--- Lpow
0. [0 e B2 Mean

Figure 12 — BSP as MPLAB project.

Then, the user might choose to use BSP project as a dependency in a target project. This requires
following steps:

1. Adding project as a dependency in a target project.
o Right-click the project in Projects tree and open its Properties (Figure 7).
o Go to “Libraries” section and click “Add LibraryProject...” (Figure 13).
o Select BSP project and add them to the target project.

Categories:

;- @ General Libraries:

O File Indusion/Exdusion Item pe—— .
S el B N75-55P-MPLAB-SAMV71Q21 (distin7s_bsp_default/production/N75-BSP-MPLAB-SAMV71Q21.a) [n7s bsp_default [~ |

Uibraries | Add Built-in Library...

- @ Building .
B @ XC32 (Global Options) Duplicate
I o xe3des Remove
2 xc32-gec
b @ xc32-g++ Up
b2 xc32d o
D xc32-ar
@ Analysis

Figure 13 — Adding library project to MPLAB project.

2. Add to the include directories: 11ib subfolders from the BSP project.
o Go to “XC32 (Global Options)” and click on “Common include dirs” option (Figure 9).
o Add paths with BSP headers to the list (Figure 14).

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc.

Board Support Package — Software User Manual Date:
SFPRCE Issue:
N7 Space Sp. z 0.0. Page:

X! Commeon include dirs

. \N75-BSP-MPLAB-SAMV71Q21ib

Relative paths are from
MPLAB X project directory. PO Cancel

ARMB-N7S-BSP-SUM
2024-08-13

14

37 of 40

Figure 14 — MPLAB project's include directories (BSP as MPLAB project).

3. Add required N7S_ TARGET <MCU> macro to preprocessor directives (see also 11.2.4).
o Goto target compiler’s settings (xc32-gcc for C, xc32-g++ for C++) and for each compiler:

= Select “Preprocessing and messages” in Option categories.

= Click on "Preprocessor macros” field and add the macros to the list (Figure 11).

Then the target project can be built and BSP drivers used in it.

Note:if the target project uses Gmac module, the necessary Phy submodule must be selected. The BSP
contains two implementations (used by various models of development boards of the supported
platforms), one must be removed or the linker will complain about duplicated symbols.

In some cases user might want to generate MPLAB project manually from the BSP source code (e.g.
the code or flags were modified using “standard” BSP development environment and now user would
like to migrate to MPLAB). To do so, compile the BSP using steps from 11.2.3. This should produce
compile commands. json file for the selected platform inside build directory. Then from inside
the BSP source folder, using environment prepared as described in 11.2 execute the command from
Listing 25 (the listing assumes SAMRH71F20 platform). The last argument of the script is the path to
the folder which will contain generated MPLAB project (if the folder exists, it will be cleared, all its
contents will be removed). This script can also be used to generate project using debug configuration.

Listing 25 — Generating MPLAB project for the BSP (for RH71 — SAMRH71F20).

$./environment/mplab/generate_mplab_project.py \
build/release/samrh71f20/compile_commands.json \
RH71 \
N7S-BSP-MPLAB-SAMRH71F20

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4
N7 Space Sp. z 0.0. Page: 380f40

12 Analytical Index

N/A

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4
N7 Space Sp. z 0.0. Page: 39 0f40
13 Lists

13.1 List of Annexes

13.1.1 Annex A — Error codes

Archive containing definitions of BSP internal error codes that can be reported by called functions using
ErrorCode output parameter.

File name: ARMB-N7S-BSP-SUM-A Error Codes.zip
SHA256: 739c9721263ea4d0ad4b353389685e360b4527562e646c4f1431c18a0265f455

13.2 List of Tables
I o] (T R S oo [A VZ=] 63 1) PO TR 9

13.3 List of Figures

Figure 1 — BSP deployment eXaAmMPIE.ccuoiiiiiiiiiiiie e 10
Figure 2 — GeneriC AriVEr GESIGN.ciuiiviiiiieieieisie sttt bbbttt sttt n b ens 11
Figure 3 — Generic RTEMS AdapLer TESION.coviiiiiiieiieieie e 11
Figure 4 — BUild dir€CtOrY [aYOUL.c.cccveiiiiicie ettt te e e sae e pe e 20
Figure 5 — Asynchronous operation With POHIING.cccvoviiiiiic i 26
Figure 6 — Asynchronous operation with ISR Callbacks.cccccovveiiiiiiiiiiiiicsee e 27
Figure 7 — Accessing MPLAB Project’s PrOPEItICS.....couiueueueieesiesiesresiesteseessesseessessessessessessessesseseeses 33
Figure 8 — Adding libraries t0 MPLAB PIrOJECT..........cciiiiiiiieieisisise st 34
Figure 9 — MPLAB PrOjJECT PrOPEITIES.c.veueeiieiieiiiiiete sttt 34
Figure 10 — MPLAB project's include directories list (BSP as standalone library).c.ccocevnennn. 34
Figure 11 — MPLAB project's preproCessor OPLIONS.coveoveveiriririeniesiesieseesieeeessesie s seens 35
Figure 12 — BSP aS MPLAB PIOJECL.ocueeiiiticie ettt sttt sttt ta et saeene et 36
Figure 13 — Adding library project to MPLAB PrOJECL.coiviieiiiice et 36
Figure 14 — MPLAB project's include directories (BSP as MPLAB Project).cocoecevveiveveiecnennnn, 37

13.4 List of Listings

Listing 1 — Unpacking BSP source from ZIP file.........ccccoeiiiiiiiiic e 18
Listing 2 — Unpacking BSP source from TAR BZIP2 file (recommended for Linux)..........cccccceveneane. 18
Listing 3 — Importing BSP build environment Docker image.c.cccvvvvieveiieic e 18
Listing 4 — Building BSP DOCKEN IMAGE.ccviiiiiieiieitecieste ettt ste et ste et te e sreera e besreen e be e sreens 19
Listing 5 — Executing command in BSP build environment Docker container..............c.ccocvvevenenienne 19
Listing 6 — Shell alias for executing command in build environment Docker container. 19
Listing 7 — Example command executed in BSP build environment Docker container.c.c....... 19
Listing 8 — Example command executed in BSP DoCKer CONtAINEr.ccoviviiiniineiiciciienes 19
Listing 9 — Build tool configuration for building driver in debug mode (without optimalization). 20
Listing 10 — Build tool configuration for building driver in release mode (with optimization). 20
Listing 11 — Compiling with GCC and include path example (BSP installed in /opt/bsp).....cvc.... 20
Listing 12 — Linking with GCC example (BSP compiled for SAMV71Q21 in /opt/bsp). ccccevvene. 21
Listing 13 — Compilation options for SAMV71Q21/SAMRH71F20/SAMRH707F18 using GCC. 21

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

ARM Board Support Package Criticality B Qualification Doc. ARMB-N7S-BSP-SUM

Board Support Package — Software User Manual Date: 2024-08-13
SFPRCE Issue: 1.4

N7 Space Sp. z 0.0. Page: 40 of 40
Listing 14 — LED example — INCIUTES.ooviiiiiiiiiesie e 21
Listing 15 — LED example — pre-processor defiNesS.cooiieeieieniniiise s 22
Listing 16 — LED example — disable WatChdog. ..o 22
Listing 17 — LED example — P1O coNfigQUIation.cccceiiiiieiiie e 23
Listing 18 — LED example — LED on/off proCedUIES.cccvcveiiiieiiii e 24
Listing 19 — LED example — BINK PrOCEAUIE.cceciviieiieieceee ettt ettt 24
Listing 20 — LED example — Main ProCRAUNE.ccveiviieeieiieeeesie st ste e sre e s e sre e saesne e sreens 25
Listing 21 — Asynchronous operations example — POHING.cccooeiiiiiiiiniieee e 26
Listing 22 — Asynchronous operations example — CallDack.ccooviiiiiineneic e 28
Listing 23 — Asynchronous operations example — error handling.c.ccovveveieieinisineeeee 28
Listing 24 — Asynchronous operations example — ISR implementation.ccccoceoviiiniiiinenens 29
Listing 25 — Generating MPLAB project for the BSP (for RH71 — SAMRH71F20).c.ccoocovvvenenee. 37

Copyright 2024 N7 Space Sp. z 0.0.
ESA Contract No. 4000137041/22/NL/AS/kk

	1 Introduction
	2 Applicable and reference documents
	2.1 Applicable documents
	2.2 Reference documents

	3 Terms, definitions and abbreviated terms
	4 Conventions
	5 Purpose of the Software
	6 External view of the software
	7 Operations environment
	7.1 General
	7.2 Hardware configuration
	7.3 Software configuration
	7.4 Operational constraints

	8 Operations basics
	9 Operations manual
	10 Reference manual
	10.1 Introduction
	10.2 Help method
	10.3 Screen definitions and operations
	10.4 Commands and operations
	10.5 Error messages

	11 Tutorial
	11.1 Introduction
	11.2 Getting started
	11.2.1 Obtaining the source
	11.2.2 Using the build environment in Docker
	11.2.3 Building the drivers
	11.2.4 Integrating BSP with user project
	11.2.5 Recommended compilation options

	11.3 Using the software on a typical task
	11.3.1 Example program – LED blink
	11.3.2 Asynchronous operations
	11.3.3 RTEMS integration
	11.3.4 BSP in MPLAB environment
	11.3.4.1 Using pre-built BSP in MPLAB
	11.3.4.2 Using BSP as MPLAB project

	12 Analytical Index
	13 Lists
	13.1 List of Annexes
	13.1.1 Annex A – Error codes

	13.2 List of Tables
	13.3 List of Figures
	13.4 List of Listings

		2024-08-13T18:06:22+0200
	Konrad Grochowski

		2024-08-13T18:32:04+0200
	Mateusz Dyrdół

		2024-08-13T20:37:50+0200
	Michał Mosdorf

